Устройство, принцип действия, диагностика лямбда-зондов. Циркониевый. Титановый. Широкополосный.

Какие бывают лямбда зонды, как устроены, как диагностировать неисправность кислородного датчика и методы проверки осциллографом. Давайте рассмотрим подробно в этой практической статье.

Существуют три типа кислородных датчиков, которые применяются в автомобилях. Циркониевый датчик. Титановый датчик. Широкополосный.

какие лямбда зонды бывают циркониевый титановый широкополосный

Существует в основном три разных, не взаимозаменяемых типа лямбда-датчика. Лямбда-датчики из диоксида циркония и диоксида титана также называют переключающими, скачками напряжения или «двоичными» датчиками, поскольку их выходной сигнал изменяется между двумя значениями в зависимости от того, находится ли топливо в обогащенном или обедненном состоянии. Третий тип – это широкополосный лямбда-датчик. Эти датчики также известны, как “линейные” лямбда-зонды, потому что они имеют выходной сигнал, который пропорционален широкому диапазону соотношений воздух-топливо. Широкополосные кислородные датчики измеряют эти соотношения и переходы между ними более точно.

Кислородный датчик

Лямбд-зонд устанавливается в выпускной трубе перед каталитическим нейтрализатором и непосредственно за катализатором. Кислородные датчики называются в обиходе первая и вторая лямбда в зависимости от места установки.

В V-образном двигателе могут быть установлены один или несколько датчиков.

Циркониевый датчик

Конфигурации проводов циркониевого лямбда-зонда:

  • Однопроводной кислородный датчик;
  • Двухпроводной кислородный датчик;
  • Трехпроводной кислородный датчик;
  • Четырехпроводной кислородный датчик.

Титановый датчик

Конфигурации проводов титанового лямбда-зонда:

  • Трехпроводной кислородный датчик;
  • Четырехпроводной кислородный датчик.

Принцип работы датчика кислорода

Циркониевый датчик

Циркониевый датчик производит сравнение содержания кислорода в системе выпуска отработавших газов с эталонным атмосферным газом, который содержится во внутренней камере. Отработавшие газы проходят над непроницаемой керамической наружной поверхностью датчика из диоксида циркония.

Эталонный атмосферный газ содержится во внутренней камере датчика. С обеих сторон керамической секции имеются электроды. Блок управления использует сгенерированное напряжение для определения топливовоздушного отношения. Бедная смесь (λ > 1). Богатая смесь (λ < 1 ).

Почему используется именно диоксид циркония? Диоксид циркония ZrO2 — это бесцветные кристаллы, с высокой температурой плавления, что является значительным преимуществом при использовании под воздействием высоких температур выхлопных газов. 

Внимание! Температура плавления оксида циркония: 2715°C

Название ИЮПАК: Zirconium(IV) oxide, Zirconium dioxide.

Этот оксид металла применяется также в стоматологии для изготовления зубных протезов. Но в большей степени повлияло на использование оксида циркония в кислородном датчике это ещё одно его полезное свойство. Диоксид циркония при нагревании проявляет свойства твёрдого электролита и проводит ионы кислорода. Это свойство используется в выхлопных системах автомобилей, а также в промышленности в анализаторах кислорода и в топливных элементах.

Строение циркониевого лямбда-зонда

строение и элементы циркониевого лямбда зонда

  1. Выпускная труба;
  2. Корпус датчика/электрический контакт;
  3. Керамический элемент;
  4. Контакты;
  5. Опорное значение воздуха (эталонный воздух);
  6. Электроды;
  7. Пористое защитное покрытие.

Блок управления (ЭБУ) постоянно регулирует топливо-воздушное соотношение. Правильное значение лямбда зонда: (λ =1 ).

Оптимальная работа кислородного датчика зависит от температуры керамики, в свою очередь оптимальная температура керамики должна быть выше 3500С

Для ускорения достижения рабочей температуры кислородные датчики оснащены нагревательным элементом.

Титановый датчик

Конструкции титанового и циркониевого датчиков схожи. Циркониевые датчики меняют напряжение, измеряя содержание кислорода в отработавших газах. Титановые датчики изменяют сопротивление посредством измерения содержания кислорода в выхлопных газах.

Чертеж с вырезом кислородного датчика со встроенным нагревательным элементом.

лямбда-зонд с нагревательным элементом в разрезе

  1. Соединительные провода
  2. Внутренние контакты
  3. Керамическая опора
  4. Корпус датчика
  5. Нагревательный элемент
  6. Трубка с прорезью (Slotted tube)
  7. Опорное значение воздуха
  8. Керамический датчик
  9. Шайба

Спецификация KIA Rio 1.6 GDI (G4FD)

Используются два кислородных датчика:

Широкополосный кислородный датчик расположен перед каталитическим нейтрализатором.

Двухточечный кислородный датчик расположен за каталитическим нейтрализатором.

Блок управления использует сигнал широкополосного датчика, чтобы задать приблизительный состав топливовоздушной смеси.

Блок управления использует сигнал двухточечного датчика для коррекции смеси.

Блок управления может также осуществлять мониторинг действия каталитического нейтрализатора.

Характеристическая форма сигнала напряжения для широкополосного кислородного датчика.

форма сигнала напряжения широкополосного датчика кислорода

Смесь стала богаче (A)

Эта смесь становится беднее (B)

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика.

график сигнала циркониевого датчика кислорода

Обратите внимание по вертикальной шкале отображается напряжение. Циркониевый датчик.

Смесь стала богаче (A)

Эта смесь становится беднее (B)

Характеристическое напряжение для титанового кислородного датчика.

График сопротивления титанового датчика

По вертикальной шкале изменение сопротивления. Титановый датчик.

Смесь стала богаче (A)

Эта смесь становится беднее (B)

Осциллограммы лямбда-зондов

Проверка циркониевого датчика осциллографом

Упрощенная электрическая схема системы измерения кислорода. Выходное напряжение датчика подается на аналогово-цифровой преобразователь (A). Блок управления производит сравнение цифрового выхода с данными внутренней справочной таблицы.

Упрощенная электрическая схема системы измерения кислорода циркониевым датчиком

Упрощенная электрическая схема системы измерения кислорода циркониевым датчиком

Для поддержания правильного соотношения топливовоздушной смеси блок управления регулирует сигнал на инжектор, для этого использует ШИМ-сигнал для управления температурой датчика (B).

Для производства измерений используется осциллоскоп.

Напряжение измеряется между точками X и Y отмеченными на электрической схеме.

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика

Характеристическая форма сигнала напряжения для циркониевого кислородного датчика

Проверка титанового датчика осциллографом

Упрощенная электрическая схема системы измерения кислорода

Упрощенная электрическая схема системы измерения кислорода титановым датчиком

Упрощенная электрическая схема системы измерения кислорода титановым датчиком

Система измерения кислорода титановым датчиком:

Цепь делителя напряжения. Внутренний резистор.

Напряжение датчика изменяется по мере изменения содержания кислорода в отработавших газах.

Сопротивление датчика также изменяется по мере изменения содержания кислорода в отработавших газах.

Напряжение подается на аналого-цифровой преобразователь (B).

Блок управления автомобиля производит сравнение цифрового выхода с данными внутренней справочной таблицы.

Для поддержания правильного соотношения топливовоздушной смеси блок управления регулирует сигнал на инжекторы. Напряжение, подаваемое в цепь делителя напряжения, должно быть исключительно стабильным, так как блок управления воспринимает любое изменение как изменение содержания кислорода в отработавших газах.

Схема поддержания стабильного напряжения датчика:

Изменяющееся напряжение аккумуляторной батареи проходит через цепь регулятора (A), при этом цепь регулятора поддерживает напряжение постоянным.

Блок управления использует ШИМ-сигнал для управления температурой датчика (C).

Для производства измерений осциллоскопом измеряется напряжение между точками X и Y указанными на принципиальной схеме.

Характеристическая форма сигнала напряжения для титанового кислородного датчика.

Блок управления использует ШИМ-сигнал для управления температурой датчика. 

Характеристическая форма сигнала напряжения для титанового кислородного датчика

Характеристическая форма сигнала напряжения для титанового кислородного датчика

Иногда требуется вы]вить исправность нагревательного элемента кислородного датчика. Компьютерная диагностика при этом не всегда сможет определить этот параметр. Кроме выявления неисправности нагревателя лямбда-зонда эта диагностика даёт информацию о скорости нагрева датчика. Это необходимо чтобы понимать в какой момент датчик выходит на рабочую температуру.

С помощью осциллографа исследуем характеристическую форму сигнала напряжения для датчика при быстром нагреве.

форма сигнала напряжения при быстром нагреве датчика кислорода

форма сигнала напряжения при быстром нагреве датчика кислорода

Характеристическая форма сигнала напряжения для датчика при медленном нагреве

форма сигнала напряжения при медленном нагреве датчика кислорода

форма сигнала напряжения при медленном нагреве датчика кислорода

Диагностика и срок службы лямбда-зондов

Срок службы циркониевого датчика

Ожидаемый срок службы: (48000 – 80000 км (30000 – 50000 миль)). По мере износа датчика возрастает время реакции.

Диагностика циркониевого датчика

Осторожно! Ни в коем случае не используйте омметр на циркониевом датчике – это может привести к его повреждению.

Проверьте время реакции и параметры изменения напряжения осциллографом.

Для контроля напряжения пользуйтесь вольтметром. Проверьте на отсутствие угольных отложений на контактах.

  • Проверьте работу цепи обогрева.
  • Проверьте состояние соединений заземления.
  • Проверьте неразрывность электрического соединения.

Срок службы титанового датчика

Ожидаемый срок службы: (48,000 – 80,000 km (30,000 – 50,000 miles)). По мере износа датчика возрастает время реакции.

Диагностика титанового датчика

  • Проверьте время реакции и параметры изменения напряжения. Для контроля сопротивления пользуйтесь омметром.
  • Проверьте на наличие отсутствие отложений, мешающих качественной диагностике.
  • Проверьте работу цепи обогрева.
  • Проверьте питание датчика. Правильное значение: (5V).
  • Проверьте состояние соединений заземления.
  • Проверьте неразрывность электрического соединения.

На этом, пожалуй, прервусь. Если остались вопросы, то задавайте в комментариях, так как всё в одну статью не поместить. Кроме того, история полна частных случаев, и у каждого свои неповторимые симптомы не похожие на то, что было у других ранее. Благодарю за интерес проявленный к материалу.

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.